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Abstract. Within the framework of second-order Rayleigh–Schrödinger perturbation theory, the
effects of the interaction of the electrons and longitudinal optical phonons in low-dimensional
semiconducting heterostructures can be investigated in a unified way. As a result, the ground-state
energy for polarons confined in a general potential can be explicitly expressed as a one-dimensional
integral. Moreover, some interesting problems, such as those of polarons in quantum wells, quantum
wires, and quantum dots, can be readily addressed just by taking different limits. Finally, in a general
sense, it is shown on the basis of numerical calculations that the polaronic effect is enhanced with
lowering dimensionality and increasing asymmetry.

1. Introduction

Recent developments in microfabrication technology, such as molecular-beam and litho-
graphic deposition, have created a variety of opportunities for the fabrication of synthetic
semiconductor structures with reduced dimensionality [1–9], such as quasi-zero-dimensional
quantum dots, quasi-one-dimensional quantum wires, and quasi-two-dimensional quantum
wells. These heterostructures have attracted substantial attention due to the novel physical
effects arising from their low dimensionality, which are very useful in device applications.

A large amount of the literature [10–32] available on such topics has been devoted to the
effects of electron–phonon interaction on the energy levels and effective masses of electrons
confined in these low-dimensional systems. Polarons in low-dimensional quantum structures
are remarkably different from those in bulk material due to the presence of confining potentials,
which may also give rise to a rich variety of phonon modes [15–21], such as confined bulk
phonon and interface phonon modes. The self-energy expressions obtained taking the various
phonon modes into account always look rather complicated. On the other hand, there are
also a number of authors [12, 22–23] who avoided including the coupling of the electrons
to the confined phonon modes as well as interface phonon modes by adopting bulk phonon
approximations, and consequently presented a relatively clear picture of the sole effect arising
from the interaction of the electrons and longitudinal optical (LO) phonons.

More recently, Mukhopadhyay and Chatterjee [12] derived a very simple closed-form
analytical expression for the ground-state energy of polarons in parabolic quantum dots
in two and three dimensions by applying second-order Rayleigh–Schrödinger perturbation
theory (RSPT). Since the value of the electron–phonon coupling constant is very small for
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some important heterostructure materials (e.g. CdS:α = 0.527; CdSe:α = 0.460; CdTe:
α = 0.315; GaAs:α = 0.068), the RSPT is helpful for dealing with such cases. Motivated
by this beautiful work, we extend their method to study the Hamiltonian that describes the
interaction of electrons and LO phonons in quantum dots with general parabolic potentials
in three dimensions. The confining potential that we choose here is only axially symmetric
(i.e. symmetrical in thexy-plane). Consequently, we can obtain a concise expression for the
ground-state energy of the polarons in the general system. More interestingly, it is only a
one-dimensional integral. If we stopped at this point, this might appear to be a trivial result.
Fortunately, it is more interesting than that. From this general expression, by taking different
special limits, we can obtain results for almost all interesting cases, such as those of polarons
in quantum wells, quantum wires, quantum dots in three dimensions, and quantum dots in two
dimensions. We are aware that the interaction matrix for purely one-dimensional polarons
diverges due to the Coulombic nature. If this were not the case, we could even extend our
discussion to quantum dots in one dimension. As ‘by-products’, we can obtain the free-polaron
ground-state energies in both two and three dimensions for weak coupling. Thus, starting from
just one general Hamiltonian, by a standard method, we can clearly provide unifying insight
into the electron–LO phonon interactions in many important systems. This is precisely the
purpose of the present paper.

This paper is organized as follows. In section 2, we derive the energy expressions for
polarons in a general potential within the framework of the second-order RSPT. In section 3,
we present our numerical results for reasonably wide ranges of the confinement potential.
Finally, we give a summary of the paper.

2. Formulation

We start with Fr̈ohlich’s Hamiltonian for an axially symmetric low-dimensional
semiconductive quantum structure, generalized for the interaction of an electron with LO
phonons:

H = −1

2
∇2
r +

1

2
[ω2(x2 + y2) + ω2

zz
2] +

∑
q

a+
q aq +

∑
q

[ξq exp(−iq · r)a+
q + h.c.] (1)

where: all vectors are in three dimensions and the units have been chosen as ¯h = m = ω0 = 1
(Feynman units);ω0, the optical phonon frequency, is assumed to be dimensionless;r is the
position vector of the electron;ω = ωh/ω0 andωz = ωzh/ω0, whereωh andωzg measure the
confining strength of the parabolic potential in thexy-plane and the directionz, respectively;
anda+

q (aq) is the creation (annihilation) operator for a LO phonon of wave vectorq. Also,ξq
for the three-dimensional systems is given by [29]

|ξq |2 = 23/2π

vq2
α (2)

wherev is the volume of the three-dimensional crystal andα is the electron–phonon coupling
constant. The value ofα is so small for most semiconductive materials (generallyα < 1) that
the weak-coupling approximation is certain to be appropriate. In addition, we must assume,
even in the weak-coupling limit, that the confining potential is stronger than the electron–
phonon interaction, in order to ensure that perturbation theory is valid.

On making the second-order RSPT correction to the GS electron self-energy for the
polaronic interaction, we obtain

1E = −
∑
j

∑
q

|〈φj (r)|ξq exp(−iq · r)|φ0(r)〉|2
Ej − E0 + 1

(3)
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Ej = (j1 + j2 + 1)ω +

(
j3 +

1

2

)
ωz (6)

whereHn(ωx) is the Hermite polynomial of ordern. This expression (equation (3)) is similar
to what was obtained as the variational ground-state energy of a Coulomb impurity-bound
polaron in a Feynman–Haken path integral calculation with the effective trial action of a
harmonic oscillator [25–28].

Using the Slater sum rule for the Hermite polynomials, and the transformation

1

Ej − E0 + 1
=
∫ ∞

0
exp[−(Ej − E0 + 1)t ] dt (7)

one can easily perform the summations overjx , jy , andjz in (3).
Now we introduce two new variables,u andv in place ofr andr′, in a familiar way:

u = 1

2
(r + r′) v = 1

2
(r − r′). (8)

Integrating over the new variableu, we obtain a simple integral for the second-order RSPT
correction to the polaron self-energy, which only contains the relative coordinatesv andt :

1E = −αω
√
ωz

π3/2

∫ ∞
0

dt
e−t

(1− e−ωt )
√
(1− e−ωzt )

×
∫

1

|v| exp

{
−(v2

x + v2
y)

[
ω + ω coth

(
1

2
ωt

)]
− v2

z

[
ωz + ωz coth

(
1

2
ωzt

)]}
dv. (9)

The solutions of this integral depend on the difference betweenω[1 + coth( 1
2ωt)] and

ωz[1 + coth( 1
2ωzt)]. Since the functionf (x) = x[1 + coth( 1

2xt)] increases with increasingx,
the value ofω[1 + coth( 1

2ωt)] is larger than that ofωz[1 + coth( 1
2ωzt)] whenω is larger than

ωz, and vice versa. So, if we changed the relative values ofω andωz, different results would
be obtained. We will proceed to discuss three different cases.

2.1.ωz = ω
With ωz = ω, we could give the second-order RSPT correction to the polaron self-energy as
follows:

1E = − 0(1/ω)

0(1/ω + 1/2)

α√
ω
. (10)

Here,0 represents the normal Gamma function.
Definingl = 1/

√
ω and rewriting the above equation, we have

1E = − 0(l2)

0(l2 + 1/2)
αl. (11)
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Here,l is the dimensionless confinement length and is given byl = l0/r0, wherel0 andr0 are
defined as

l0 =
(

h̄

mωh

)1/2

and r0 =
(

h̄

mω0

)1/2

.

In fact, this just coincides with the case of 3D symmetrical quantum dots with parabolic
potentials, discussed by Mukhopadhyay, Chatterjee and others [12, 29–30]. Thus, the results
are naturally the same as theirs.

2.2.ωz > ω

When the confinement in the directionz is stronger than that in the other two directions
(ωz > ω), we can easily simplify the form of the polaron GS energy correction to read as
follows:

1E = −α
√
ωz

π

∫ ∞
0

dt
e−t√

1− e−ωzt
arctan

√
x − 1√

x − 1
(12)

with

x = ωz[1 + coth( 1
2ωzt)]

ω[1 + coth( 1
2ωt)]

.

We note here that if the confinement in thexy-plane is at the weak-confinement limit
(i.e.ω→ 0), then the above equation will obviously yield the results for quantum wells with
parabolic potentials. One can easily show that

lim
ω→0

ω

(
1 + coth

1

2
ωt

)
= 2

t
.

Hence the form of the polaron GS energy can be reduced to

1E = −α
√
ωz

π

∫ ∞
0

dt
e−t√

1− e−ωzt
arctan

√
x ′t − 1√

x ′t − 1
(13)

wherex ′ = 1
2ωzt [1 + coth( 1

2ωzt)]. The properties of quantum wells are reflected perfectly by
the above formula. Below, we will discuss the other cases derived from the above equation by
taking different limits.

From equation (13), we can obtain1E = −α, if we also make the directionz a weak-
confinement one, like the others. This form corresponds to the limit of a 3D free polaron. The
result is also the same as those produced by using second-order perturbative theory [22], the
Feynman path integral method [27–28], Lee–Low–Pines variational calculations [31, 32], etc.

Moreover, since it also includes the other two limits:

lim
ωz→∞

(
1 + coth

1

2
ωzt

)
= 2

lim
ωz→∞

arctan
√
x − 1= π

2

then if the directionz is a strong-confinement-limit one (ωz →∞) too, we have

1E = − 0(1/ω)

0(1/ω + 1/2)

α√
ω

π

2
. (14)

This is just another important case of low-dimensional semiconductive quantum structure: 2D
symmetrical quantum dots. Similarly, it should again be emphasized here that all of these
expressions, and the following ones, are derived just from the general 3D Hamiltonian, and
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that the results are the same as those derived by others, who dealt with these problems using
ND (N -dimensional) or 2D Hamiltonians [10–13].

Furthermore, if we take another limit,ω→ 0, in equation (14), we obtain the ground-state
energy of pure 2D polarons:1E = −(π/2)α, which is the same as the result obtained by
many different methods in the literature.

2.3.ωz < ω

As the confinement in the directionz is weaker than those in the other two directions (ωz < ω),
the form of the polaron GS energy correction (9) becomes

1E = −α
2

√
ωz

π

∫ ∞
0

dt
e−t√

1− e−ωzt
1√

1− x ln

(
1 +
√

1− x
1−√1− x

)
. (15)

In the weak-confinement limit (ωz → 0) for the directionz, we can easily deduce a new
expression for the GS energy for quantum wires from equation (15), which can be written as

1E = − α

2
√
π

∫ ∞
0

dt
e−t√
t (1− x) ln

(
1 +
√

1− x
1−√1− x

)
(16)

where

x = 2

ω[1 + coth( 1
2ωt)]t

.

Equation (16) is related to the case of quantum wires, one of the most important cases of low-
dimensional semiconductive quantum structures. Moreover, it certainly exhibits the nature of
quantum wires.

Next, we will continue by discussing another case corresponding to a different limit of
equation (15). After carefully investigating all of the cases that may arise, we find that if we
take the limitsω→ 0 andx → 1, we obtain

lim
x→1

1√
1− x ln

(
1 +
√

1− x
1−√1− x

)
= 2.

Finally, we can obtain1E = −α. This just corresponds to the GS energy of the free 3D
polarons in the weak-coupling limit. These results are also consistent with what can be inferred
from other theory [22, 26–28, 31, 32].

From the above discussion, we notice something particularly interesting: if the effective
confinement potential satisfiesω → ∞ andωz → ∞, the corresponding model is that of a
0D polaron. However, from the limit

lim
ω→∞ω

(
1 + coth

1

2
ωt

)
→∞

we can see that all of the results will diverge. This corresponds to the divergence of the
interaction coefficient [12]

lim
N→1
|ξq |2 = lim

N→1

0
(

1
2(N − 1)

)
2N−3/2π(N−1)/2

vNqN−1
α→∞. (17)

So, renormalization of the coupling constantα is usually called for. More interestingly, we
can also easily derive the case of 3D symmetric quantum dots from the case of quantum wells,
equation (13), and the case of quantum wires, equation (15), when the confinement potential
satisfiesω→ ωz orωz → ω.

We stress that, starting just from the general 3D Hamiltonian (1), by standard methods,
we have obtained an overall picture of low-dimensional semiconductive systems. It not only
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includes the three most important cases, namely quantum wells, quantum dots, and quantum
wires, but also contains a great deal of information on these systems, which can be accessed
merely by taking certain limits of the above equations.

3. Numerical results and discussion

In order to calculate the polaronic energy correction, we need to know the ground-state energy
in the absence of electron–phonon interaction. It is known that the ground-state energy
corresponding to the harmonic Hamiltonian

H = P 2 +
1

2
ω2r2

in N dimensions is given exactly byEhm = (N/2)ω. Hence, the polaronic corrections to the
ground-state energy for quantum wells, quantum wires, and 3D asymmetric quantum dots read
1E = Ehm − ω, 1E = Ehm − 1

2ωx , and1E = Ehm − ω − 1
2ωz, respectively. As usual,

the dimensionless confinement length of the semiconductor quantum structures is defined by
lx = 1/

√
ωx , ly = 1/

√
ωy .

Now, we will present some numerical results for the polarons in semiconductor quantum
structures for arbitrary coupling constants and broad ranges of the confinement lengths of these
structures, obtained by means of equations (12)–(17).

Firstly, as stated before, from equation (12), we are certain to obtain the expression for
the case of quantum wells (equation (13)) and the case of quantum wires (equation (16)),
when the confinement lengthl or lz is increased(l→∞, lz →∞). After numerically solving
equations (13) and (16), we plotted the polaronic correction(−1E) to the ground-state energy
as a function of the confinement lengthl (or lz); this is shown in figure 1. From this figure,
we can obtain a great deal of information about the quantum well and quantum wire systems.
It is very obvious that the electron–optical phonon interaction has a pronounced effect on the
electronic energy when the confinement lengthl (or lz) is sufficiently small. As the sizes of
these two quantum systems increase, the polaronic correction increases and asymptotically

Figure 1. The polaronic corrections−1E (Feynman units) to the GS energy of an electron in a
parabolic quantum dot as a function of the confinement lengthl (Feynman units), for both two and
three dimensions.
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Figure 2. The polaronic corrections−1E (Feynman units) to the GS energy of an electron in a
parabolic quantum well and that of an electron in a quantum wire as functions of the confinement
lengthsl andlz (Feynman units).

assumes a constant value, exactly as stated by Hai, Peeters, and Devreese [24], and many other
authors [12, 22, 31, 32]. Moreover, we also find that, for given values of the electron–phonon
coupling constantα and the confinement lengthl, it is evident from the figure that the polaronic
effect for quantum wires is stronger than that for quantum wells. In other words, the polaronic
effect is more pronounced in smaller systems.

When the confinement length for the directionsx andy, namelyl, is equal tolz, the
confinement length for the directionz, we can derive the cases for 3D symmetric quantum
dots. In exactly the same way, when the confinement length for the directionz (lz) satisfies
lz → 0, we can also obtain the case for 2D quantum dots. The information for the 2D quantum
dot and 3D quantum dot is more clearly shown in figure 2. From the data shown in the figure,
we conclude that the electron–optical phonon interaction also has a pronounced effect on the
electronic energy when the dot size is sufficiently small. Like for the other two quantum cases,
the polaronic correction increases and asymptotically assumes a constant value as the size of
the dot increases for both 2D and 3D systems. Also indicated are features of low-dimensional
quantum systems. In addition, it may be noticed from the figure that, for given values of
the electron–phonon coupling constantα and the confinement lengthl, the polaronic effect is
stronger for a 2D dot than for a 3D dot.

Furthermore, we can display all of the above cases in a three-dimensional plot. In figure 3,
we have plotted the polaronic corrections(−1E) to the ground-state energy in three dimensions
as a function of the confinement lengthsl andlz. It is quite clear from the figure that we can
observe all of the cases listed above in this configuration. We can also deduce the different
confinements for the quantum wells, quantum wires, and quantum dots, and the general trends
exhibited by these low-dimensional quantum systems corresponding to the different relative
sizes of such structures, just as we discussed above. It is emphatically also the case that we
can derive further important results from this figure. We can see by inspection the general
behaviour of the low-dimensional quantum systems. When the confinement of the quantum
wires is increased, the scenario tends to the case of the 1D polaron; when the confinement of the
quantum well is increased, it tends to the case of the 2D polaron. Furthermore, if we compare all
of these cases of low-dimensional quantum systems, we can observe the relationship between
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Figure 3. The polaronic corrections−1E (Feynman units) to the GS energy of an electron in
a parabolic low-dimensional semiconductive quantum system as a function of the confinement
lengthsl andlz (Feynman units).

the degree of confinement and the polaronic correction. It may be noted from the figure that,
for given values of the electron–phonon coupling constantα and the confinement lengthl,
the polaronic effect is stronger for the smaller and less symmetric quantum systems. For
example, the polaronic effect for a 2D quantum dot is stronger than that for a 3D quantum
dot; the polaronic effect for a quantum wire is weaker than that for a 2D quantum dot; the
polaronic effect for a quantum wire is weaker than that for a quantum dot but stronger than that
for a quantum well. Moreover, when the extent of the confinement increases, the polaronic
corrections for the quantum well and the quantum wire will asymptotically assume the same
constant value as that for the 3D quantum dot.

In addition, the results show that there is a ‘bulk’ limit. These conclusions are certainly
consistent with what has been deduced elsewhere in the literature.

4. Conclusions

Some simple expressions for the ground-state energies of low-dimensional semiconductive
quantum systems can be derived from just one general Hamiltonian within the framework
of the RSPT. After considering all possible cases for low-dimensional quantum structures,
we were able to establish general and individual characteristics of these low-dimensional
semiconductive quantum systems. Then we unified them in a three-dimensional plot. As a
result of numerical calculations, we were able to state that for given values of the electron–
phonon coupling constantα and the confinement lengthl, the polaronic effect is enhanced
with lowering dimension and increasing asymmetry.

It is also shown that there is an important relationship between the polaronic effect and the
extent of the confinement. We can derive a relationship among the systems, from figures 1–3,
as follows. The polaronic effect for a 2D quantum dot is stronger than that for a 3D quantum
dot. The polaronic effect for a quantum wire is weaker than that for a quantum dot, but stronger
than that for a quantum well. When the confinement length increases, the polaronic corrections
for the quantum well and the quantum wire asymptotically assume the same constant value as
that for the 3D quantum dot.
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Finally, it should be pointed out that the present theory is also suitable for addressing other
more complicated problems. Such extensions are in progress.
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